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Abstract—In an ad hoc cognitive radio network, secondary
users access channels temporarily unused by primary users and
the existence of a communication link between two secondary
users depends on the transmitting and receiving activities of
nearby primary users. Using theories and techniques from con-
tinuum percolation and ergodicity, we analytically characterize
the connectivity of the secondary network defined in terms of
the almost sure finiteness of the multihop delay, and show the
occurrence of a phase transition phenomenon while studying
the impact of the temporal dynamics of the primary traffic
on the connectivity of the secondary network. Specifically, as
long as the primary traffic has some temporal dynamics caused
by either mobility and/or changes in traffic load and pattern,
the connectivity of the secondary network depends solely on its
own density and is independent of the primary traffic; otherwise
the connectivity of the secondary network requires putting a
density-dependent cap on the primary traffic load. We show that
the scaling behavior of the multihop delay depends critically
on whether or not the secondary network is instantaneously
connected. In particular, we establish the scaling law of the
minimum multihop delay with respect to the source-destination
distance when the propagation delay is negligible.

Index Terms—Ad hoc cognitive radio network, connectivity,
traffic dynamics, multihop delay, continuum percolation, ergod-
icity.

I. I NTRODUCTION

In spectrum overlay networks, primary and secondary users
share a common spectrum in a hierarchical manner to achieve
spectrum efficiency and interoperability [1]. By sensing and
learning the communication environment via their cognitive
radios [2], secondary users identify and exploit instantaneous
and local spectrum opportunities while avoiding unacceptable
interference to primary users [1].

We analytically characterize the connectivity and multihop
delay of the secondary network. The existence of a commu-
nication link between two secondary users depends on not
only their separation but also the occurrence of the spectrum
opportunity determined by the transmitting and receiving
activities of nearby primary users. It is this interaction with the
primary network that makes the problem fundamentally dif-
ferent from, and the analysis considerably more complex than
their counterparts in homogeneous networks. A qualitative and
quantitative characterization of the impact of primary traffic on
the secondary network is thus critical for understanding the

This work was supported in part by the Army Research Office under Grant
W911NF-08-1-0467 and by the National Science Foundation under Grant
CCF-0830685.

W. Ren and Q. Zhao are with the Department of Electrical and Computer
Engineering, University of California, Davis, CA 95616. A. Swami is with
the Army Research Laboratory, Adelphi, MD 20783.

∗ Corresponding author. Phone: 1-530-752-7390. Fax: 1-530-752-8428.
Email: qzhao@ece.ucdavis.edu

performance limit of ad hoc cognitive radio (CR) networks,
and is the main topic of this paper.

A. Main Results

We consider a Poisson distributed secondary network over-
laid with a Poisson distributed primary network in an infinite
two-dimensional Euclidean space1. We define connectivity via
the finiteness of the minimum multihop delay (MMD) between
two randomly chosen secondary users, referred to as finite-
delay connectivity (fd-connectivity). Specifically, the network
is fd-disconnected if the MMD between two randomly chosen
secondary users is infinite almost surely (a.s.), and is fd-
connected if the MMD is finite with a positive probability
(wpp.). Notice that the MMD considered here is not the
multihop delay for a specific routing protocol. Instead, it is the
minimum multihop delay that can be achieved byany routing
protocol. The MMD thus specifies a fundamental performance
limit and provides a benchmark for comparison.

We consider temporal dynamics in the primary traffic which
could be caused by mobility and/or changes in the traffic
load and pattern. We assume that the secondary network is
static. Under the Poisson model, the two key parameters that
characterize the topological structure of the secondary network
and the primary traffic load are the densityλS of the secondary
users and the sequence{λPT (t) : t ≥ 0} of the densities of
the primary transmitters. The fd-connectivity of the secondary
network can thus be characterized by a partition of the infinite-
dimensional space(λS , {λPT (t) : t ≥ 0}).

Although the above partition appears to be intractable, we
show that as long as the primary traffic has some temporal
dynamics (no matter how small the range of the dynamics
is), the fd-connectivity of the secondary network depends
solely on its own densityλS and is independent of the
densities{λPT (t)} of the primary transmitters, as illustrated
in Fig. 1(a). In other words, no matter how heavy the primary
traffic is, the secondary network is fd-connected, as long as its
densityλS exceeds the critical densityλc of a homogeneous
network (i.e., in the absence of the primary network). Note
that whenλS > λc, there is a.s. a unique infinite connected
component (ICC) [3, Chapter 3] in the secondary network
formed by topological links (a topological link exists between
two users that are within communication range). We show that
for any two secondary users in this ICC, the MMD is finite
a.s. The intuition is that messages can traverse a topological
path connecting the two secondary users by making stops

1This infinite network model is equivalent in distribution to the limit of a
sequence of finite networks with a fixed density as the area of the network
increases to infinity,i.e., the so-calledextended network.
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Fig. 1. FD-Connectivity of ad hoc CR networks when the primary traffic has temporal dynamics (a) and no temporal dynamics (b). The critical density
λ∗

S
of the secondary users is defined as the infimum density of the secondary users that ensures instantaneous connectivity under apositivedensity of the

primary transmitters, and is equal to the critical densityλc of a homogeneous network; the upper boundaryλ∗

PT
(λS) is defined as the supremum density of

the primary transmitters that ensures instantaneous connectivity with afixed densityλS of the secondary users.

in between to wait for spectrum opportunities, and more
importantly, the waiting time is finite a.s. due to the temporal
dynamics of the primary traffic. Since the percentage of the
secondary users in this ICC is strictly positive, it follows that
the MMD between two randomly chosen secondary users is
finite wpp., i.e., the secondary network is fd-connected.

On the other hand, when the primary network is static, we
show that the secondary network is fd-connected if and only
if (iff.) it is instantaneouslyconnected, as shown in Fig. 1(b).
The secondary network is instantaneously connected if it has a
unique ICC formed by communication links a.s. The existence
of a communication link requires the existence of a topological
link and the presence of a spectrum opportunity determined
by the transmitting and receiving activities of nearby primary
users. Due to this requirement, the instantaneous connectivity
puts a cap on the tolerable primary traffic which is an
increasing function of the densityλS of the secondary users
(see Fig. 1(b)). Moreover, given a static primary network,
the set of communication links in the secondary network is
fixed over time. It implies that if a topological link does not
see an opportunity at the beginning, then it will never see
it. Thus, messages from one secondary user can only reach
another secondary user within the same connected component
formed by communication links. If the secondary network is
instantaneouslyconnected, then wpp. two randomly chosen
secondary users belong to this ICC formed by communication
links2, and the MMD between them is finite; otherwise they
belong to two different finite connected components a.s., and
they are inaccessible from each other,i.e., the MMD is infinite.

Although the primary traffic does not affect the fd-
connectivity of the secondary network when it has temporal
dynamics, it does affect the behavior of the MMD. Indeed, we
show that the scaling behavior of the MDD with respect to the
source-destination distance is starkly different depending on
whether the secondary network is instantaneously connected
wpp. or not. Notice that the multihop delay in the secondary
network consists of two components: the propagation delay
and the waiting time at each hop for the occurrence of a
spectrum opportunity. When the propagation delay is negligi-

2It is shown in [4] that there exists either zero or one ICC formed by
communication links in the secondary network a.s.

ble, we show that if the secondary network is instantaneously
connected wpp., the MMD is asymptotically independent of
the source-destination distance; otherwise the MMD scales at
least linearly with the source-destination distance. We also
study the case of nonnegligible propagation delay. Simulations
show that the MMD-to-distance ratio for a secondary network
that is instantaneously connected wpp. can be orders of
magnitude smaller than that for a secondary network that is
not instantaneously connected a.s.

These analytical results also provide important insights
and design guidelines for practical systems. Since almost all
primary networks have temporally dynamic traffic, it follows
from the result on fd-connectivity that the accessibility be-
tween two secondary users is independent of the presence of
the primary network, although it may incur a larger multihop
delay. From the result on multihop delay, we can see that
if the primary network has heavy traffic, then the secondary
network can only be used for delay-tolerant applications;
conversely, if a secondary network is deployed for delay-
sensitive applications, then it should be operated within the
instantaneous connectivity regionCINS for a positive portion
of time3, which imposes restrictions on the traffic load of the
primary network or on the density of the secondary network.

B. Related Work

There have been only a few results on the connectivity
of ad hoc CR networks. The Laplacian matrix is used to
approximately characterize the graph connectivity in [5]; but
this does not characterize the multihop delay, and it does not
take into account the impact of the receiving activities of the
primary network on the secondary network.

Different types of connectivity of homogeneous networks
(i.e.,secondary network only) have been well studied in [6–14]
and references therein. The theory of continuum percolation
has been used by Dousseet al. in analyzing the connectivity
under the worst case mutual interference [10, 11]. In [12, 13],
the connectivity and the multihop delay in a homogeneous

3Since{λPT (t)} is ergodic, it follows from Fact A1 (in Appendix A) that
the instantaneous connectivity of the secondary network wpp. is equivalent to
that of the secondary network for a positive portion of time.
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network with static or dynamic on-off links are investigated
from a percolation-based perspective. A dynamic connectivity
graph for ALOHA networks is introduced in [14] to establish
the scaling law of the delay with respect to the source-
destination distance.

In [15], we have studied the connectivity and multihop
delay of ad hoc CR networks under the assumption that the
realizations of the primary network are i.i.d. across slots, but
we had not obtained the necessary and sufficient condition
for the independence of the fd-connectivity of the secondary
network from the primary traffic. In this paper, not only is
this i.i.d. assumption replaced by a more realistic assumption
under which the realizations of the primary network can be
temporally correlated, but also the necessary and sufficient
condition is provided. As detailed in Sec. III-D and Sec. IV,
the relaxation of this i.i.d. assumption significantly complicates
the analysis, especially the one for fd-connectivity.

II. N ETWORK MODEL

We consider a Poisson distributed secondary network over-
laid with a Poisson distributed primary network in an infinite
two dimensional Euclidean space. The primary network adopts
a synchronized slotted structure with slot lengthTS. ThusTS

can be considered to be the time constant of the spectrum
opportunities which are determined by the transmitting and
receiving activities of the primary users. Without loss of
generality, we setTS = 1.

At t = 0, primary transmitters are distributed according
to a two-dimensional Poisson point processΠPT (0) with
densityλPT (0). At eacht ≥ 0, each primary transmitter has
a probabilityq(t) of not transmitting att + 1, due to lack of
packets or perceived channel conditions. The primary transmit-
ters which continue transmitting will move to a new position
at t + 1 according to a random displacement vector

−−→
m(t)

with a finite variance in each direction. The movements are
i.i.d. for different primary transmitters, and for each primary
transmitter,

−−→
m(t) is i.i.d. across slots4. Based on the thinning

theorem and [17][Proposition 1.3], the primary transmitters
which continue transmitting will form a two-dimensional
Poisson point process with densityλPT (t)[1 − q(t)] at t + 1.

Let ΠPT (t) (t ≥ 0) denote the point process of the
primary transmitters att. At t + 1, some primary nodes,
that were silent in slott, may start transmitting. They are
distributed, independent ofΠPT (t), according to a two-
dimensional Poisson point process with densityp(t)λPT (t),
where the multiplicative factorp(t) ≥ 0 may exceed unity5.
It follows by induction that the point process of transmitters
ΠPT (t + 1) containing the old primary transmitters att and
the new primary transmitters att + 1 is Poisson with density
λPT (t + 1) = λPT (t)[1 − q(t) + p(t)]. The random process

4This assumption of “i.i.d. across slots” is made so that we can use the
classical central limit theorem (see Appendix B). Since the central limit
theorem can be extended to the two cases of identical but weakly dependent
distributions and martingales [16, Sec. 7.7], this assumption can be relaxed.

5We introducep(t) for convenience. One can consider this as a birth-death
process; nodes die when they have no more packets to send, and are (re-)born
when they do. We could also consider this from a duty-cycling perspective:
nodes sleep and wake up.

{λPT (t)} is assumed to be stationary and ergodic. The two
related random processes{q(t) ∈ [0, 1]} and {p(t) ≥ 0} are
assumed to be stationary and ergodic; they may be correlated
with {λPT (t)}.

The primary receivers are randomly (may not be uniformly)
located within the transmission range6 Rp of their corre-
sponding transmitters at eacht, and their relative positions
with respect to their corresponding transmitters can be either
fixed or a stationary and ergodic random process over time.
Based on the displacement theorem [18, Chapter 5], it can
be shown that at eacht, the primary receivers form another
two-dimensional Poisson point processΠPR(t) with density
λPT (t), which is correlated withΠPT (t).

Secondary users are distributed according to a two-
dimensional Poisson point processΠS with densityλS , which
is independent of{ΠPT (t)} and {ΠPR(t)}. The locations
of the secondary users are static over time, and they have
a uniform transmission rangerp.

III. C ONNECTIVITY

In this section, we analytically characterize the connectivity
of the secondary network. In particular, we show the occur-
rence of a phase transition phenomenon in terms of the impact
of the temporal dynamics of the primary traffic on the fd-
connectivity of the secondary network.

A. Topological Link vs. Communication Link

A topological linkexists between any two secondary users
that are within each other’s transmission range. Thus, topolog-
ical links in the secondary network are independent of the pri-
mary network. In contrast, as discussed in the next paragraph,
the existence of acommunication linkbetween two secondary
users depends not only on the distance between them but
also on the availability of the communication channel,i.e., the
presence of a spectrum opportunity. As a result, even in a static
secondary network, communication links are time-varying due
to the temporal dynamics of spectrum opportunities.
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Fig. 2. Definition of spectrum opportunity.

We consider the disk signal propagation and interference
model as illustrated in Fig. 2. There exists an opportunity from
µ, the secondary transmitter, toν, the secondary receiver, if the
transmission fromµ does not interfere withprimary receivers

6Here we assume that all the primary transmitters use the same power and
the transmitted signals undergo isotropic path loss.
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in the solid circle, and the reception atν is not affected by
primary transmittersin the dashed circle [19]. Referred to as
the interference range of secondary users, the radiusrI of the
solid circle centered atµ depends on the transmission power of
µ and the interference tolerance of primary receivers, whereas
the radiusRI of the dashed circle (the interference range of
primary users) depends on the transmission power of primary
users and the interference tolerance of the secondary userν.

It follows from the above discussion that spectrum op-
portunities areasymmetric. Specifically, a channel that is an
opportunity whenµ is the transmitter andν the receiver may
not be an opportunity whenν is the transmitter andµ the
receiver. Since unidirectional links are difficult to utilize, es-
pecially for applications with guaranteed delivery that require
acknowledgements, we only consider bidirectional links in the
secondary network when we define connectivity.

B. Instantaneous Connectivity vs. Topological Connectivity

In each slott, we can obtain an undirected random graph
GH(λS , λPT (t), t) consisting of all the secondary users and
their communication links, which represents the instantaneous
connectivity of the secondary network in this slot. As illus-
trated in Fig. 3, this graphGH(λS , λPT (t), t) is determined
by the three Poisson point processes in slott: ΠS , ΠPT (t),
andΠPR(t), whereΠPT (t) andΠPR(t) are correlated.
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Fig. 3. A realization of the random graphGH(λS , λPT (t), t) which consists
of all the secondary users and their communication links in slott (denoted by
solid lines). The solid circles denote the interference regions of the primary
transmitters within which secondary users cannot successfully receive, and the
dashed circles denote the required protection regions for the primary receivers
within which secondary users should refrain from transmitting.

We define the instantaneous connectivity of the secondary
network in slot t as the a.s. existence of a unique ICC
in GH(λS , λPT (t), t). Given the transmission power and the
interference tolerance of both the primary and the secondary
users (i .e., Rp, RI , rp, andrI are fixed), the instantaneous
connectivity regionCINS for slot t is defined as

CINS
∆
= {(λS , λPT (t)) : GH(λS, λPT (t), t) is connected}. (1)

The upper boundaryλ∗
PT (λS) of CINS is defined as

λ
∗

PT (λS)
∆
= sup{λPT (t) : G(λS, λPT (t), t) is connected.}. (2)

The critical density of the secondary users,λ∗
S is defined as

λ
∗

S

∆
= inf{λS : ∃λPT (t) > 0 s.t.GH(λS, λPT (t), t) is connected}.

It is shown in [4] thatλ∗
S equals the critical densityλc of a

homogeneousnetwork. A detailed analytical characterization
of CINS is given in [4]. Letθ(λS , λPT (t)) denote the prob-
ability that an arbitrary secondary user belongs to the ICC in
GH(λS , λPT (t), t), if one exists, then we have that

θ(λS , λPT (t))

{

> 0, if (λS , λPT (t)) ∈ CINS ;
= 0, otherwise.

(3)

The fd-connectivity of the secondary network is defined
by the finiteness of the MMD between two randomly chosen
secondary users. To ensure finiteness of the multihop delay
between two secondary users, it is necessary to have a path
formed by topological links between them, otherwise they are
not accessible from each other. Consider an undirected random
graphGS(λS) consisting of all the secondary users and their
topological links. Notice thatGS(λS) depends only on the
Poisson point processΠS of the secondary network. Define
the topological connectivity of the secondary network as the
a.s. existence of a unique ICC inGS(λS). It follows that fd-
connectivity implies topological connectivity,i.e., topological
connectivity is usually weaker than fd-connectivity. On the
other hand, it is easy to show that instantaneous connectivity
is usually stronger than fd-connectivity.

C. Connectivity with Static Primary Network

Consider a static primary network,i.e., the sets of the
primary transmitters and receivers do not change over time,
and their positions are also fixed. Then, as shown below,
the necessary and sufficient condition for the connectivity
of the secondary network is its instantaneous connectivity
(see Fig. 1(b) for an illustration),i.e., the connectivity of
GH(λS , λPT (t), t).

Proposition 1: Given a static primary network,i.e., p(t) =

q(t) = 0 and
−−→
m(t) =

−→
0 ∀ t, a necessary and sufficient

condition for the connectivity of the secondary network is
given by (λS , λPT ) ∈ CINS (defined by (1)),i.e., the MMD
is finite wpp. iff. the network is instantaneously connected.

Proof: If (λS , λPT ) ∈ CINS, then there exists a unique
ICC formed by communication links a.s in the secondary
network. It implies that two randomly chosen secondary users
belong to this ICC wpp. Since the set of communication links
do not change, it follows that the MMD between them is finite
wpp., i.e., the secondary network is connected.

If (λS , λPT ) /∈ CINS , then only finite connected compo-
nents formed by communication links exist a.s. Thus, two
randomly chosen secondary users belong to two different
connected components a.s., and the MMD between them is
infinite a.s.

D. Connectivity with Dynamic Primary Network

Let r(t) denote the magnitude of the displacement vec-
tor

−−→
m(t). Consider a dynamic primary network, where the

dynamics can be caused by mobility(E[r2(t)] > 0) and/or
changes in traffic load and pattern (E[q(t)] > 0 implying
that E[p(t)] > 0). As illustrated in Fig. 1(a), we show in the
following proposition that a necessary and sufficient condition
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for the connectivity of the secondary network is its topological
connectivity,i.e., the connectivity ofGS(λS).

Proposition 2: Consider a dynamic primary network,i.e.,
E[q(t)] > 0 or E[r2(t)] > 0. A necessary and sufficient
condition for the connectivity of the secondary network is
λS > λc, whereλc is the critical density of homogeneous
networks. �

Remark. Since the multihop delay is a finite sum of single-
hop delays, the a.s. finiteness of the MMD is implied by that
of the single-hop delay. Under the primary network model
where its realizations are correlated across slots, the single-
hop delay is, however, difficult to analyze. In the proof, we
use theories and techniques from ergodic theory to overcome
this difficulty. Specifically, we establish the ergodicity of a
measure-preserving (m.p.) dynamical system which consists of
the probability space associated with the primary transmitters
and an m.p. shift transformation in the time domain. A brief
introduction to ergodic theory can be found in Appendix A.

Proof: If λS ≤ λc, then there does not exist an infinite
topologically connected component inGS(λS) a.s. It follows
that two randomly chosen secondary users belong to two
different topologically connected components a.s., and the
MMD between them is infinite a.s.

If λS > λc, then there exists a unique infinite topologically
connected componentCT in GS(λS) a.s. It follows that two
randomly chosen secondary usersµ andν belong toCT wpp.
In other words, we can find a topological pathL with finite
hops fromµ to ν wpp. Since the MMDt(µ, ν) is bounded
above by the multihop delaytL(µ, ν) along the pathL, it
suffices to show the a.s. finiteness oftL(µ, ν), which is a
direct consequence of the following lemma.

Lemma 1:Let ts(w1, w2) denote the single-hop delay from
w1 to w2, wherew1 and w2 are connected via a topological
link. If E[q(t)] > 0 or E[r2(t)] > 0, thents(w1, w2) < ∞ a.s.

Proof of Lemma 1: Assume that the propagation delay
τ ≤ TS = 1 so that the spectrum opportunity lasts long enough
to ensure the success of the transmission. Also assume that
w1 intends to transmit the message att = 0. Thus,ts(w1, w2)
is the waiting timetsw(w1, w2) for the presence of the first
bidirectional opportunity plus the propagation delayτ , i.e.,

ts(w1, w2) = tsw + τ = argmin
t∈{0,1,2,...}

{IE(t) = 1} + τ,

whereIE(t) is the indicator of the event that a bidirectional
opportunity exists in thetth slot.

Next we show the a.s. finiteness oftsw. Let I(w, d, rx/tx)
denote the event that there exist primary receivers/transmitters
within distanced of the secondary userw, andI(w, d, rx/tx)
the complement ofI(w, d, rx/tx). The occurrence of the bidi-
rectional opportunityE is given by

E
∆
= I(w1, rI , rx) ∩ I(w1, RI , tx) ∩ I(w2, rI , rx) ∩ I(w2, RI , tx).

Let O be the midpoint of the segment connectingw1 and
w2. Define the eventF as

F
∆
= I(O, RM , tx),

whereRM = max
{

rI + Rp +
rp

2 , RI +
rp

2

}

. Let t̄sw be the
waiting time for the first occurrence of the eventF , i.e.,

t̄sw = arg min
t∈{0,1,2,...}

{IF (t) = 1},

whereIF (t) is the indicator of the eventF during thetth slot.
SinceF ⊆ E, we havetsw ≤ t̄sw. Thus, we can show the a.s.
finiteness oftsw by proving the a.s. finiteness oft̄sw.

Consider the stationary random process{ΠPT (t) : t ≥ 0}
where ΠPT (t) is the Poisson point process formed by the
primary transmitters in slott. Based on a trivial generalization
of the Kolmogorov extension theorem, we can construct a
double-sided stationary random process{ΠPT (t) : t ∈ Z}
which has the same finite dimensional distributions as
{ΠPT (t) : t ≥ 0}. Let (ΩPT , FPT , PPT ) be the probability
space of{ΠPT (t) : t ∈ Z}. Let πt (t ∈ Z) denote the
realization ofΠPT (t). ∀ ω = {..., π−1, π0, π1, ...} ∈ ΩPT ,
define a shift transformationT as

(Tω)t = πt+1, ∀ t ∈ Z, (4)

where (Tω)t denotes thet-th realization of Tω. Since
{ΠPT (t) : t ∈ Z} is time-stationary7, it follows that
(ΩPT , FPT , PPT , T ) constitute an m.p. dynamical system.
If (ΩPT , FPT , PPT , T ) is ergodic, which will be shown in
Lemma 2, it follows from Fact A1 that a.s.

lim
n→∞

1

n

n−1
∑

k=0

IF (k) = lim
n→∞

1

n

n−1
∑

k=0

T k
IF (0) = E[IF (0)]

=

∫ ∞

0

exp
(

−λPT πR2
M

)

dF (λPT ) > 0,

whereF (λPT ) is the CDF ofλPT (0). Thus,t̄sw < ∞ a.s.
Now we only need to prove the following lemma to com-

plete the proof of Lemma 1.
Lemma 2:Let (ΩPT , FPT , PPT ) be the probability space

of {ΠPT (t) : t ∈ Z} and T the shift transformation de-
fined by (4). If E[q(t)] > 0 or E[r2(t)] > 0, then
(ΩPT , FPT , PPT , T ) is ergodic.

Sketch Proof of Lemma 2: We show that
(ΩPT , FPT , PPT , T ) is mixing, which implies its
ergodicity [20, Proposition 2.5.1]. This is done by proving
the asymptotic independence of one event from another
transformed event. For details, please see Appendix B.

Remark. If E[q(t)] = E[p(t)] = 0 and E[r2(t)] = 0,
i.e., the primary network is static, it can be easily shown
that the m.p. dynamical system(ΩPT , FPT , PPT , T ) is not
ergodic. Consider the following counterexample: letf ∈
L1(ΩPT , FPT , PPT ) be the indicator function of the event
that there does not exist any primary transmitter within the
unit squareB1 centered at the origin att = 0, then for any
ω ∈ ΩPT , the time averagēf of f is given by

f̄ = lim
n→∞

1

n

n−1
∑

k=0

f
(

T kω
)

=

{

1, if no primary tx in B1 at t = 0;
0, otherwise.

But the ensemble averageE[f ] of f is given by

E[f ] =

∫

ΩP T

f(ω)dPPT = exp(−λPT ).

7The temporal stationarity of{ΠPT (t)} is shown by [17, Proposition 1.3].
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Based on Fact A1, we have that the m.p. dynamical system in
the static case is not ergodic.

Combining Proposition 1 and 2, we obtain a necessary and
sufficient condition for the independence of the fd-connectivity
of the secondary network with the primary network.

Theorem 1:Let λc be the critical density of homogeneous
networks. ThenλS > λc is a necessary and sufficient con-
dition for the fd-connectivity of the secondary network iff.
E[q(t)] > 0 or E[r2(t)] > 0.

This theorem implies the occurrence of a phase transition
phenomenon in the necessary and sufficient condition for the
fd-connectivity. Specifically, if the primary network is static,
the connectivity of the secondary network is equivalent to its
instantaneous connectivity which depends on both its topology
and the primary traffic; if the primary network is dynamic,
the connectivity of the secondary network is equivalent to its
topological connectivity which depends solely on its topology
and is independent of the primary traffic.

IV. M ULTIHOP DELAY

In this section, we analytically characterize the scaling
behavior of the MMD with respect to the source-destination
distance when the primary traffic is dynamic. LetC(GS(λS))
be the ICC inGS(λS) when λS > λc i.e., the secondary
network is fd-connected. We seek to establish the scaling law
of the MMD between two arbitrary users inC(GS(λS)) with
respect to the distance between them. As shown below, the
scaling behavior of the MMD is determined by whether the
secondary network is instantaneously connected wpp. or not.

A. Negligible Propagation Delay

When the propagation delayτ = 0, once a user has re-
ceived the message, it can spread the message instantaneously
throughout the connected component, formed by communica-
tion links, which contains it. Thus, if the secondary network
is instantaneously connected during some time slot, the source
can route its message via the ICC such that the message can
move a large number of hops towards the destination within
this slot, leading to the multi-hop delay being asymptotically
independent of the source-destination distance. On the other
hand, if the secondary network is always not instantaneously
connected, the message can move forward only a limited
number of hops within each slot, which results in the linear
scaling of the MMD. We state this formally next.

Theorem 2:Assume thatτ = 0, and E[q(t)] > 0 or
E[r2(t)] > 0. For any two secondary usersµ, ν ∈ C(GS(λS)),
the ICC ofGS(λS), let t(µ, ν) denote the MMD fromµ to ν
andd(µ, ν) the distance betweenµ andν; then

T2.1 if Pr{λPT (t) < λ∗
PT (λS)} > 0 where λ∗

PT (λS) is
defined in (2),

lim
d(µ,ν)→∞

t(µ, ν)

g(d(µ, ν))
= 0 a.s.,

whereg(d) is any monotonically increasing function of
d with lim

d→∞
g(d) = ∞;

T2.2 if Pr{λPT (t) < λ′
PT } = 0 for someλ′

PT > λ∗
PT (λS),

lim inf
d(µ,ν)→∞

E[t(µ, ν)]

d(µ, ν)
> 0.

Pr{λPT (t) < λ∗
PT (λS)} > 0 implies Pr{(λS , λPT (t)) ∈

CINS} > 0, and Pr{λPT (t) < λ′
PT } = 0 for someλ′

PT >
λ∗

PT (λS) implies Pr{(λS , λPT (t)) ∈ CINS} = 0, but not vice
versa. We state the two conditions in the above way, because
we have not been able to establish whether the boundary point
(λS , λ∗

PT (λS)) ∈ CINS .
Proof Sketch: For T2.1, we use the ICC in

GH(λS , λPT (t0), t0) during some slott0 to construct a path
from µ to ν such that the multihop delay along this path
is independent of the distanced(µ, ν) (see Fig. 4 for an
illustration). Lett0 be the first slot such thatµ belongs to the
ICC C(t0) of GH(λS , λPT (t0), t0), andwν the user inC(t0)
which is closest toν. Since the propagation delayτ = 0, the
multihop delay fromµ to wν is zero. It follows that

t(µ, ν) = t0 + t(wν , ν).

Then it suffices to show thatt0 and t(wν , ν) are independent
of d(µ, ν), which we prove by using continuum percolation
theory and ergodic theory. For details, please see Appendix C.

µ
ν

wν

C(t0) LC

d(µ, ν)

Fig. 4. An illustration of the constructed pathLC from µ to ν when
Pr{(λS , λPT (t)) ∈ CINS} > 0. C(t0) is the ICC of G(λS , λPT (t0))
which first containsµ, andwν is the user inC(t0) which is closest toν.

T2.2 is proven by using a coupling argument [3, Chapter
2] and then deriving a lower bound ont(µ,ν)

d(µ,ν) by considering
the fact that the message fromµ can traverse only a finite
distance towardsν during each slot. For details, please see
Appendix D.

From the above, we see that the existence of the giant
connected component can significantly reduce the multihop
delay, especially when the destination is far away from the
source.

B. Nonnegligible Propagation Delay

When the propagation delayτ > 0, it takes at least time
τ for the message to traverse a distancerp, which imposes
a lower boundτ/rp on the ratio of the MMD to the source-
destination distance. This implies that the MMD scales at least
linearly with the source-destination distance.

The positive propagation delayτ also imposes an upper
bound TS/τ on the maximum number of hops that the
message can traverse in a slotTS. If the secondary network is
instantaneously connected in this slot, this upper bound can be



7

(a) instantaneously connected (λPT = 5km−2, τ = 0) (b) not instantaneously connected (λPT = 30km−2, τ = 0)

(c) instantaneously connected (λPT = 5km−2, τ = 0.01s) (d) not instantaneously connected (λPT = 30km−2, τ = 0.01s)

Fig. 5. MMD-to-distance ratio (in logarithmic scale) vs. source-destination distance for random walk model. Notice that the MMD-to-distance ratio is
obtained in one Monte Carlo run. The secondary users are distributed within a square[−5km, 5km]× [−5km, 5km] with densityλS = 700km−2. Given the
transmission rangerp = 50m of the secondary users,λS is larger than the critical densityλc(50) = 576km−2. Other simulation parameters are:rI = 80m,
Rp = 50m, RI = 80m, TS = 1s, prw

0
= 0.05, rm = 5m, rM = 30m.

actually attained in the ICC consisting of communication links.
Otherwise, this upper bound may not be attained due to the
limited diameter of the finite connected components formed by
communication links, especially when the propagation delay
τ is small. In other words, there may not exist a connected
component which has a path withTS/τ hops. Thus, it can be
expected that the MMD-to-distance ratio for a network that is
instantaneously connected wpp. is much smaller than that for
one that is not instantaneously connected a.s. (see Fig. 5-(c, d)
and Fig. 6-(c, d) in Sec. V for an illustration).

V. SIMULATION RESULTS

We present two sets of simulation results. One set is to
show the impact of connectivity on the scaling law of MMD
with respect to the source-destination distance (see Fig. 5 and
Fig. 6), and the other set is to show the impact of the temporal
dynamics of the primary traffic on the MMD (see Fig. 7).
The densityλS of the simulated secondary network is larger

than the critical densityλc. Thus, the secondary network is
either instantaneously connected or only connected but not
instantaneously connected, depending on the densityλPT of
the primary transmitters. The area of the network is chosen
to be large enough such that the asymptotic behavior can be
observed. Without loss of generality, we assume that the source
is located at the origin. Each node in the network is a potential
destination. This allows us to simulate different realizations of
the source-destination pair using one Monte Carlo run.

We consider two mobility models for the primary trans-
mitters: the random walk model and the random waypoint
model [21], where the former model has i.i.d. increments
but the latter one does not. For the random walk model,
each primary transmitter has a probabilityprw

0 of staying
at the current position in the next slot; otherwise it will
move to a new position according to a displacement vector
whose magnitude is uniformly distributed within an interval
[rm, rM ] and whose angle is uniformly distributed within
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(a) instantaneously connected (λPT = 5km−2, τ = 0) (b) not instantaneously connected (λPT = 30km−2, τ = 0)

(c) instantaneously connected (λPT = 5km−2, τ = 0.01s) (d) not instantaneously connected (λPT = 30km−2, τ = 0.01s)

Fig. 6. MMD-to-distance ratio (in logarithmic scale) vs. source-destination distance for random waypoint model. Notice that the MMD-to-distance ratio is
obtained in one Monte Carlo run. The secondary users are distributed within a square[−5km, 5km]× [−5km, 5km] with densityλS = 700km−2. Given the
transmission rangerp = 50m of the secondary users,λS is larger than the critical densityλc(50) = 576km−2. Other simulation parameters are:rI = 80m,
Rp = 50m, RI = 80m, TS = 1s, prwp

0
= 0.05, vm = 5m/s, VM = 30m/s.

[0, 2π). When it reaches the simulation boundary, it bounces
off the simulation border with an angle determined by the
incoming direction.

For the random waypoint model, each primary transmitter
chooses a random destination (not the destination for its trans-
mission) uniformly distributed in the simulation area, which
determines its displacement direction; and then it chooses
a random speed uniformly distributed within an interval
[vm, vM ] to move towards the destination; upon reaching the
destination, it may stay for a random number of slots which is
geometrically distributed with parameter1−prwp

0 . The primary
receivers are uniformly distributed within transmission range
Rp of their corresponding transmitters in each slot.

Since it is difficult to identify the path with the MMD which
depends on the topology of the secondary network and the
transmitting and receiving activities in the primary network
in an intricate way, we obtain the MMD by considering a
flooding scheme that tries every possible path from source

to destination. During flooding, every user that has received
the message (including the source) will transmit the message
to its neighbors (i.e., within its transmission range) when it
experiences a bidirectional spectrum opportunity with any of
its neighbors. The transmission attempts will not stop until all
its neighbors receive the message. The time that a user first
receives the message during the flooding is the MMD from the
source to this user. To highlight the impact of the waiting time
for spectrum opportunities which is unique to CR networks, we
do not consider the delay caused by scheduling, contention, or
queuing. It can be shown that this flooding scheme gives us the
MMD. We stress that flooding is used solely to determine the
MMD and verify our scaling laws; flooding is not suggested
as a routing protocol in the secondary network.

Fig. 5-(a, b) and Fig. 6-(a, b) show the MMD-to-distance
ratio as a function of the source-destination distance when the
propagation delayτ = 0, where each dot represents a realiza-
tion of the destination. We see that if the secondary network
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(a) τ = 0 (b) τ = 0.01s

Fig. 7. The fractional difference(E[MMD1]−E[MMD2])/E[MMD1] expressed as a percentage vs. source-destination distance. The average value is taken
over 1000 Monte Carlo runs. ForE[MMD1], the densityλPT (t) of the primary transmitters is fixed to be5km−2. For E[MMD2], λPT (t) is uniformly
distributed within[0km−2, 10km−2] in each slot, and it is i.i.d. across slots. Other simulation parameters are the same as Fig.??.

is instantaneously connected (Fig. 5-(a) and Fig. 6-(a)), the
ratio decreases rapidly with distance and can be expected to
go to zero. On the other hand, if the secondary network is not
instantaneously connected (Fig. 5-(b) and Fig. 6-(b)), the ratio
levels off as the distance increases and will approach a positive
constant. Note that in Fig. 5-(a) and Fig. 6-(a), the MMD-to-
distance ratios of different realizations of the destination are
grouped into several continuous curves, each associated with
a fixed MMD. Since the message is mainly delivered via the
ICC consisting of communication links when the secondary
network is instantaneously connected, the secondary users are
actually grouped according to the first time that they are in an
ICC. Fig. 5-(a) and Fig. 6-(a) tell us that due to the temporal
dynamics of spectrum opportunities caused by the mobility of
the primary network, every node will be part of an ICC within
a few slots.

In Fig. 5-(c, d) and Fig. 6-(c, d), we compare the MMD-to-
distance ratio in a network that is instantaneously connected
and in a network that is not whenτ is nonzero but small. The
four red dashed lines in Fig. 5-(c, d) and Fig. 6-(c, d) denote
the lower boundτ/rp imposed by the propagation delay.
Although the ratio for the network that is instantaneously
connected does not go to zero due to the nonnegligible
propagation delay, it is100 times smaller than the ratio for the
network that is not. Notice that a small group of dots is located
at the bottom left corner of Fig. 5-(d). This is because they are
close to the source, and their corresponding secondary users
happen to fall into the small connected component formed
by communication links containing the source in the first few
slots.

We also compare the expected MMD (denoted by
E[MMD1]) under a mobile primary network that has fixed
traffic load with the one (denoted byE[MMD2]) under a
mobile primary network that has time-varying traffic load8.
The fractional difference(E[MMD1]−E[MMD2])/E[MMD1]

8For mobility, here we only consider the random walk model.

is expressed as a percentage in Fig. 7, where the secondary
network is always instantaneously connected. The fact that
the fractional difference is always positive implies that the
introduction of another type of temporal dynamics reduces
the expected MMD. Moreover, when the propagation delay
τ = 0 (see Fig. 7-(a)), the fractional difference is more or
less constant; whenτ > 0 (see Fig. 7-(b)), it drops as the
source-destination distance increases. Since the percentage of
the secondary users in the ICC for case2 is larger than the
one for case1 during many slots, the waiting time of each
secondary user to become part of the ICC, which equals the
MMD when τ = 0, is uniformly decreased (irrespective of
the distance from the source). But whenτ > 0, the reduction
of the expected MMD in case2 is limited by the positive
propagation delayτ .

VI. CONCLUSION AND FUTURE WORK

We say that the secondary or cognitive radio network is
connected if the minimum multihop delay between an arbitrary
source-destination pair is finite wpp. We have analytically
characterized this connectivity. The impact of the primary
traffic on the connectivity of the secondary network has been
examined by establishing a necessary and sufficient condition
for connectivity. Specifically, depending on whether the pri-
mary traffic has temporal dynamics or not, the connectivity
of the secondary network is equivalent to its topological
connectivity which is independent of the primary traffic, or
its instantaneous connectivity which depends on the primary
traffic. The temporal dynamics of the primary traffic can be
caused by either mobility or changes in traffic load and pattern,
and it is shown to significantly improve the connectivity of
the secondary network in the sense that no matter how heavy
the primary traffic is, the secondary network is connected as
long as its density exceeds the critical density of homogeneous
networks.
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We have also studied the impact of connectivity on the
multihop delay. When the propagation delay is negligible, de-
pending on whether the secondary network is instantaneously
connected with a positive probability or not, the scaling of the
minimum multihop delay behaves differently in terms of the
scaling order. This scaling result is independent of the random
positions of the source and the destination, and it only depends
on the network parameters (e.g., the density of the secondary
users and the traffic load of the primary network).

In the above analysis, we have assumed a disk signal prop-
agation model which only incorporates path-loss. If we take
into account fading and shadowing, then a fixed transmission
range does not hold, leading to a random connection model
(RCM) [3, Chapter 1]. Since the RCM shares several basic
properties (e.g., the ergodicity and the existence of the critical
density) with the Boolean model used in this paper, we expect
that the results established here can be extended to the RCM,
although the derivations may become more complicated.

To highlight the impact of the waiting time for spectrum op-
portunities on the multihop delay of the secondary network, we
have not considered delay caused by scheduling or contention
among secondary users which shares similar flavor to that in
conventional ad hoc networks. The results thus characterize
the minimum delay and the fundamental performance limit.
It is our hope that this paper will serve as a starting point
to a more complete characterization of multihop delay that
includes all these different factors.

APPENDIX A: BASICS OFERGODIC THEORY

The study object of ergodic theory is the so-called measure-
preserving (m.p.) dynamical system (d.s.)(Ω, F, µ, T ),
which consists of a setΩ, aσ-algebraF of measurable subsets
of Ω, a nonnegative measureµ on (Ω, F), and an invertible
m.p. transformationT : Ω → Ω such thatµ(T−1F ) = µ(F )
∀ F ∈ F. A setF ∈ F is said to be T-invariant ifT−1F = F .

An m.p.d.s.(Ω, F, µ, T ) is said to be ergodic if for any
invariant set, either itself or its complement has measure zero.
We use the following fact frequently in the paper.

Fact A1: [20, Theorem 2.4.4] An m.p.d.s.(Ω, F, µ, T )
is ergodic, where(Ω, F, µ) is a probability space, iff.∀f ∈
L1(Ω, F, µ) (i.e., f is a random variable with finite mean),
andω ∈ Ω we have

lim
n→∞

1

n

n−1
∑

k=0

f
(

T kω
)

=

∫

Ω

fdµ a.s.

If T is a shift transformation in the time domain, the above
equation can be interpreted as the a.s. equality between the
time average and the ensemble average.

An m.p.d.s.(Ω, F, µ, T ) is said to bemixing if ∀ E, F ∈
F, µ(T nE ∩ F ) − µ(E)µ(F ) → 0 as n → ∞. A mixing
m.p.d.s is ergodic [20, Proposition 2.5.1]. Typically it is easier
to establish ergodicity by showing that the m.p.d.s. is mixing.

APPENDIX B: PROOF OFLEMMA 2
We consider two cases:
Case 1:E[q(t)] = E[p(t)] = 0 but E[r2(t)] > 0. Without

loss of generality, we assume thatE
[

m2
x(t)

]

> 0 where

mx(t) is the x-component of the displacement
−−→
m(t) in slot

t. Consider two eventsF1 andF2 which depend only on the
points of ΠPT (0) within a box Bm centered at the origin
with side lengthm. Let Gn denote the event that all the
points of ΠPT (0) within Bm are outsideBm in slot n, and
HK the event that there are at mostK points of ΠPT (0)
within Bm. Let X(n) be thex-component of the cumulative
displacement associated with a point fromt = 0 to t = n, i.e.,
X(n) =

∑n
t=0 mx(t). Then

Pr{Gn|HK}

≥

K
∑

k=0

(Pr{|X(n − 1)| > m})
k Pr{#points∈ Bm = k|HK}

≥ (Pr{|X(n − 1)| > m})
K

.

Here we have used the i.i.d. property ofX(t) across points.
It follows from Lemma B1 in [22, Appendix B] that

lim
n→∞

Pr{|X(n − 1)| > m} = 1.

Thus,

lim
n→∞

Pr{Gn|HK} = 1. (B1)

If Gn occurs for somen, then obviouslyF1 is independent
of T nF2, i.e., Pr{F1 ∩ T nF2|Gn ∩ HK} = Pr{F1|Gn ∩
HK}Pr{T nF2|Gn ∩ HK}. Now since

Pr{F1 ∩ T nF2|HK}

= Pr{F1 ∩ T nF2 |Gn ∩ HK}Pr{Gn|HK}

+Pr{F1 ∩ T nF2|Gn ∩ HK}Pr{Gn|HK},

we have that

Pr{F1|Gn ∩ HK}Pr{T nF2|Gn ∩ HK}Pr{Gn|HK}

≤ Pr{F1 ∩ T nF2|HK}

≤ Pr{F1|Gn ∩ HK}Pr{T nF2|Gn ∩ HK}Pr{Gn|HK}

+Pr{Gn|HK}.

Thus,

lim
n→∞

Pr{F1 ∩ T nF2|HK}

= lim
n→∞

Pr{F1|Gn ∩ HK}Pr{T nF2|Gn ∩ HK}Pr{Gn|HK}

= lim
n→∞

Pr{F1|Gn ∩ HK} lim
n→∞

Pr{T nF2|Gn ∩ HK}.

Eqn. (B1) and the temporal stationarity of{ΠPT (t)} yield

lim
n→∞

Pr{F1|Gn ∩ HK} = Pr{F1|HK},

lim
n→∞

Pr{T nF2|Gn ∩ HK} = lim
n→∞

Pr{T nF2|HK}

= Pr{F2|HK}.

We thus have that

lim
n→∞

Pr{F1 ∩ T nF2|HK} = Pr{F1|HK}Pr{F2|HK}.

Since lim
K→∞

Pr{HK} = 1, asK → ∞,

lim
n→∞

Pr{F1 ∩ T nF2} = Pr{F1}Pr{F2}.

Since any two arbitrary eventsF1 andF2 can be approxi-
mated by two sequences of events{Fm

1 } and {Fm
2 } which
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depend only on the realization ofΠPT (0) inside Bm, the
conclusion follows from Lemma C1 in [22, Appendix C].

Case 2:E[q(t)] > 0. Consider two eventsF1 andF2 which
depend only on the points9 of {ΠPT (t) : − T ≤ t ≤ T }
within a box Bm centered at the origin with side lengthm.
Let Gn denote the event that all the points which have visited
Bm during −T ≤ t ≤ T do not transmit in slotn − T , and
HK the event that there are at mostK such points. Fixing a
realization of{q(t)}, we have that

Pr{Gn|HK}

≥

K
∑

k=0

[

1 −

n−T−1
∏

i=T

(1 − q(i))

]k

Pr{#points∈ Bm = k|HK}

≥

[

1 −

n−T−1
∏

i=T

(1 − q(i))

]K

Since{q(t)} is ergodic, based on Fact A1, we have that

lim
n→∞

1

n

n−1
∑

t=0

q(t) = E[q(t)] a.s.,

implying that lim
n→∞

∑n−1
t=0 q(t) = ∞ a.s. It follows that

lim
n→∞

n−T−1
∏

i=T

(1 − q(i)) = 0 a.s.

Thus,
lim

n→∞
Pr{Gn|HK} = 1,

and the rest of the proof follows along the same line of the
one of Case 1.

APPENDIX C: PROOF OFT2.1

We use the ICC consisting of communication links in
GH(λS , λPT (t0), t0) during some slott0 to construct a path
LC from µ to ν such that the multihop delay along this path
is independent of the distanced(µ, ν) (see Fig. 4). Then we
analyze the multihop delaytC(µ, ν) alongLC .

Assume thatµ starts trying to send the message at timet =
0. Let C(t) be the ICC inGH(λS , λPT (t), t) if it exists10, and
t0 the first slot such thatµ ∈ C(t0). Let (ΩP , FP , PP ) be the
probability space of{ΠPT (t), ΠPR(t) : t ∈ Z}, and define a
shift transformationT similarly to (4). Given thatE[q(t)] > 0
or E[r2(t)] > 0, the ergodicity of the m.p. dynamical system
{ΩP , FP , PP , T } follows along the same line of the proof
of Lemma 2. LetFt denote the event thatµ ∈ C(t). Since
Pr{λPT (t) < λ∗

PT (λS)} > 0 implies that∃ λ′
PT < λ∗

PT (λS)
such that Pr{λPT (t) ≤ λ′

PT } > 0, we have that

Pr{F0} ≥ Pr{λPT (t) ≤ λ′
PT }θ(λS , λ′

PT ) > 0,

where θ(λS , λ′
PT ) is the probability that an arbitrary sec-

ondary users belongs to an ICC inGH(λS , λ′
PT , t) given by

9Since the set of the primary transmitters may change in every slot, it is
not enough to only consider the points ofΠPT (0).

10SinceλPT (t) is time-varying, it is possible thatC(t) does not exist in
some slots.

(3). It follows from the arguments similar to those in showing
that t̄sw < ∞ a.s. in the proof of Lemma 1, thatt0 < ∞ a.s.

Given C(t0), we define userwν as the user inC(t0) that
is closest toν, i.e.,

wν
∆
= argmin

wi∈C(t0)

d(wi, ν).

Notice that ifν ∈ C(t0), thenwν = ν.
As illustrated in Fig. 4, the constructed pathLC passes

throughwν , and the multihop delaytC(µ, ν) along the path
LC can be expressed as

tC(µ, ν) = t0 + t(µ, wν) + t(wν , ν) = t0 + t(wν , ν),

where t(wν , ν) is the MMD from wν to ν. In the last step,
we have usedt(µ, wν) = 0, which is due to the fact thatµ,
wν ∈ C(t0) andτ = 0. Next we prove the following lemma.

Lemma C1:t(wν , ν) is finite a.s.
Proof Sketch: We first show thatd(wν , ν) < ∞ a.s. by

using the ergodicity of the network model, and then obtain
an upper bound on the multihop delaytL(wν , ν) along the
shortest path11 L(wν , ν) from wν to ν. Since t(wν , ν) ≤
tL(wν , ν), the a.s. finiteness oft(wν , ν) follows from that of
the upper bound ontL(wν , ν). The proof here is inspired by
the proof of Lemma 9 in [13], but with a much simpler proof
of d(wν , ν) < ∞. For details, see [15, Appendix B].

APPENDIX D: PROOF OFT2.2

Let t′(µ, ν) be the MMD fromµ to ν whenλPT (t) = λ′
PT

∀ t. Then based on a coupling argument [3, Chapter 2], we
haveE[t(µ, ν)] ≥ E[t′(µ, ν)]. It suffices to show that

lim inf
d(µ,ν)→∞

E[t′(µ, ν)]

d(µ, ν)
= 0,

which is shown in [15, Lemma 4].
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